
19 Fourier transform

19.1 A first look at the Fourier transform

In an introductory ODE class you all should have studied the Laplace transform, which was used to
turn an ordinary differential equation into an algebraic one. There are a number of other integral
transforms, which are useful in one or another situation. Arguably, the most ubiquitous and general
is the so-called Fourier transform, which generalizes the technique of Fourier series on non-periodic
functions. For the motivation of the Fourier transform I recommend reading the textbook or other
possible references (see below), in these notes I start with a bare and dry definition.

Definition 19.1. The Fourier transform of the real valued function f : R −→ R of the real argument
x is the complex valued function f̂ : R −→ C of the real argument k defined as

f̂(k) =
1√
2π

ˆ ∞

−∞
f(x)e−ikx dx. (19.1)

The inverse Fourier transform, which allows to recover f if f̂ is known, is given by

f(x) =
1√
2π

ˆ ∞

−∞
f̂(k)eikx dk. (19.2)

Remark 19.2. 1. Since the Fourier transform plays a somewhat auxiliary role in my course, I will
not dwell on it for very long. There are a lot of available textbooks on Fourier Analysis; I would
like to mention two additional sources: the lecture notes by Brad Osgood The Fourier transform
and its applications (they are freely available on the web) for a thorough introduction to the
subject, including careful coverage of the relations of the delta function and Fourier transform,
and Körner, T. W. Fourier analysis. Cambridge University Press, 1989 for the already initiated.

2. There are different definitions of the Fourier transform. You can also find in the literature

f̂(k) =
1

A

ˆ ∞

−∞
eiBkx dx,

where the following choices are possible:

A =
√
2π, B = ±1,

A = 1, B = ±2π,

A = 1, B = ±1.

The only difference in the computations is the factor which appears (or does not appear) in front
of the formulas. Be careful if you use some other results from different sources.

3. Very often, together with the hat notation, the operator notation is used

f̂(k) = Ff(x), f(x) = F−1f̂(k).
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(Strictly speaking something like the following should be used: f̂(k) = F{f(x)}(k), but such
notations very quickly becomes unreadable.)

Both F and F−1 are linear operators, since for them, from the properties of the integral, it holds
that

F(αf(x) + g(x)) = αFf(x) + Fg(x),

and a similar expression is true for F−1.

To emphasize that the pair f and f̂ are related sometimes something like

f(x) 
 f̂(k)

is used.

4. In the definition of the Fourier transform I have an improper integral, which means that I
have to bother about the convergence. Moreover, note that the complex exponent, by Euler’s
formula, is a linear combination of sine and cosine, and hence my transform should be defined
only for those f that tend sufficiently fast to zero. This is actually a very nontrivial question,
what the space of functions is on which the Fourier transform is naturally defined, but this will
not bother me in this course. Moreover, there will be some examples, which would definitely
contradict the classical understanding of the Fourier transform. I will treat them in a heuristic
way remembering that the rigorous justification can be made within the theory of generalized
functions.

5. If you still insist on some intuitive understanding of the Fourier transform, recall the formula for
the Fourier series coefficients in the exponential form (one of the remarks in the Fourier series
section). Specifically, if one works on the interval (−π, π), then

ck =
1

π

ˆ π

−π
f(x)e−ikx dx, k ∈ Z.

The similarity with the definition of Fourier transform should be obvious. That is, intuitively,
Fourier transform is nothing else other than the generalization of the formula for the Fourier
coefficients on the whole real line R. In this respect the “miraculous” fact that the inverse
Fourier transform produces the original function, stops being miraculous, since this is exactly
the reason why we introduced the Fourier coefficients — to represent the original function f .

Consider several examples to get a feeling about the Fourier transform.

Example 19.3 (Fourier transform of the rect (for rectangle) function). Let

Πa(x) =

{
1, |x| < a,

0, otherwise.

By the definition (19.1) I have

Π̂a(k) =
1√
2π

ˆ a

−a
e−ikx dx =

eika − e−ika

√
2π ik

=

√
2

π

sin ak

k
,
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using the fact that

sin at =
eiat − e−iat

2i
.

It follows from the definition of the inverse Fourier transform that

Πa(x) =
1√
2π

ˆ ∞

−∞

√
2

π

sin ak

k
eikx dk.

The last integral is quite difficult to evaluate directly, and the given definitions of the Fourier transform
are often a direct way for some nontrivial integrals. Note that the Fourier transform of an even function
is even (and real valued), which is not a coincidence.

Example 19.4 (The exponential decay). Let

fr(x) =

{
0, x ≤ 0,

e−ax, x > 0,

where a is a positive constant. Then

f̂r(k) =
1√

2π(a+ ik)
,

which is complex valued even if k is real. Similarly, for

fl(x) =

{
eax, x ≤ 0,

0, x > 0,

I find

f̂l(k) =
1√

2π(a− ik)
.

Now I can easily calculate the Fourier transform for

f(x) = e−a|x| = fl(x) + fr(x),

using the linearity of F :

f̂(k) = f̂r(k) + f̂l(k) =

√
2

π

a

k2 + a2
,

which is an even function if k is real.

Example 19.5 (Duality principle). Let

f(x) =
1

x2 + a2
, a > 0.

I have

f̂(k) =
1√
2π

ˆ ∞

−∞

e−ikx

x2 + a2
dx.
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This integral is difficult to evaluate using only the basic knowledge from Calculus (actually, impossible
to the best of my knowledge, let me know if I am wrong). However, from the previous, I know that

e−a|x| = F−1

(√
2

π

a

k2 + a2

)
=

a

π

ˆ ∞

−∞

eikx

k2 + a2
dk.

If I replace k with x and x with −k I will get the integral (up to a multiplicative factor), that I know
how to find. Therefore I conclude that

f̂(k) =

√
π

2

e−a|k|

a
.

This is actually a consequence of the striking resemblance of the Fourier and inverse Fourier
transforms, the difference being just an extra minus sign. I would like to formulate this important
fact as a theorem.

Theorem 19.6. If the Fourier transform of f(x) is f̂(k), then the Fourier transform of f̂(x) is f(−k).

This theorem helps reducing the table of Fourier transforms in half, since if I know the Fourier
transform f̂ of f this immediately means that I know the Fourier transform ĝ of the function g = f̂ .
To practice this theorem convince yourself that

F
(
sin ax

x

)
=

√
π

2
Πa(k).

Example 19.7 (Fourier transform of the delta function). Let f(x) = δ(x). Then

f̂(k) = δ̂(k) =
1√
2π

ˆ ∞

−∞
δ(x)e−ikx dx =

1√
2π

.

Hence the Fourier transform of the delta function is a constant function. From here I can immediately
obtain, invoking the duality principle, that the Fourier transform of the constant, say 1, is

F(1) =
√
2π δ(k),

is the delta function! But stop, if I’d like to use my definition (19.1) then the integral

ˆ ∞

−∞
1 · e−ikx dk,

strictly speaking, does not exist, at least in the sense we discuss it in Calc II! Well, the exact meaning
to this integral can be given within the framework of the generalized functions, but this will not bother
us here.

19.2 Properties of the Fourier transform. Convolution

Direct evaluation of the Fourier transform becomes very often quite tedious. A list of the properties
of the Fourier transform helps evaluating it in many special cases.
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1. Shift theorem. If f(x) has Fourier transform f̂(k) then the Fourier transform of f(x − ξ) is
e−ikξ f̂(k). A very particular example of this property is

Fδ(x− ξ) =
1√
2π

e−ikξ .

Similarly (remember the duality), the Fourier transform of eiηxf(x) is f̂(k − η).

2. Dilation theorem. If f(x) has Fourier transform f̂(k) then the Fourier transform of f(cx), c ̸= 0
is

1

|c|
f̂

(
k

c

)
.

Example 19.8. To practice this theorem let me find the Fourier transform of very important e−ax2
.

For the following calculations I recall one of the most remarkable integrals
ˆ
R
e−x2

dx =
√
π, or

ˆ
R
e−x2/2 dx =

√
2π.

To find the required transform I start with specific example:

I(k) = F
(
e−

x2

2

)
=

1√
2π

ˆ
R
e−

x2

2 e−ikx dx.

I recall that e−ikx = cos kx+ i sin kx by Euler’s formula, sin is an odd function and hence contributes
nothing to the integral, and therefore

I(k) =
1√
2π

ˆ
R
e−

x2

2 cos kx dx.

Now, direct calculations imply that

I ′(k) =
1√
2π

ˆ
R

(
−xe−

x2

2

)
sin kx dx = −k

1√
2π

ˆ
R
e−

x2

2 cos kx dx = −I(k),

where I used the integration by parts and the fact that (e−x2/2)′ = −xe−x2/2. That is, I now reduced
my problem of calculating the integral to the following ODE problem

I ′(k) = −kI(k), I(0) = 1,

which implies that

I(k) = e−
k2

2 ,

that is my exponent coincides with my Fourier transform! In other words, the exponent is an eigen-
function of operator F with eigenvalue 1 (this may not sound like a big deal, but the fact is that
Fourier transform has only four eigenvalues, and I just found one of them makes it sound a little more
important).

Finally, using the dilation theorem, taking c =
√
2a, I find

F
(
e−ax2

)
=

1√
2a

e−
k2

4a .
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3. Derivatives and Fourier transform. If f(x) has Fourier transform f̂(k) then the Fourier transform
of f ′(x) is ikf̂(k). Hence the Fourier transform turns the differentiation into an algebraic operation
of multiplication by ik. Immediate corollary is that the Fourier transform of f (n)(x) is (ik)nf̂(k). By

the duality principle or by a direct proof, the Fourier transform of xf(x) is i df̂dk .

4. Integration and Fourier transform. If f(x) has Fourier transform f̂(k) then the Fourier transform
of its integral g(x) =

´ x
−∞ f(s) ds is

ĝ(k) = − i

k
f̂(k) + πf̂(0)δ(k).

Using this property I can immediately find Fourier transform of the Heaviside function χ(x):

Fχ(x) = − i

k

1√
2π

+

√
π

2
δ(k).

Since
sgnx = χ(x)− χ(−x),

then

F sgnx = −i

√
2

π

1

k
.

Exercise 1. Prove all four properties of the Fourier transform.

5. Convolution. Now let me ask the following question: if I know that f(x) 
 f̂(k) and g(x) 
 ĝ(k)
then which function has the Fourier transform f̂(k)ĝ(k)?

I have

f̂(k)ĝ(k) =
1

2π

ˆ ∞

−∞
f(x)e−ikx dx

ˆ ∞

−∞
g(y)e−iky dy =

=
1

2π

¨ ∞

−∞
f(x)g(y)e−ik(x+y) dx dy =

=
1

2π

ˆ ∞

−∞

(ˆ ∞

−∞
g(y)e−ik(x+y) dy

)
f(x) dx = [x+ y = s]

=
1

2π

ˆ ∞

−∞

(ˆ ∞

−∞
g(s− x)e−iks ds

)
f(x) dx =

=
1

2π

ˆ ∞

−∞
e−iks

(ˆ ∞

−∞
g(s− x)f(x) dx

)
ds.

So, if I introduce a new function

h(s) =

ˆ ∞

−∞
g(s− x)f(x) dx,

then I showed that √
2πf̂(k)ĝ(k) = ĥ(k).

Now I can formally state my result.
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Definition 19.9. The convolution of two functions f and g is a function h = f ∗ g defined as

h(s) = f ∗ g =

ˆ ∞

−∞
f(s− x)g(x) dx.

Basically, by the above reasoning I proved

Theorem 19.10. Let h = f ∗ g. Then

ĥ(k) =
√
2πf̂(k)ĝ(k).

In the opposite direction, the Fourier transform of the product of two functions u(x) = f(x)g(x) is

û =
1√
2π

f̂ ∗ ĝ.

The second part of the theorem can be proved in a similar way or using the duality principle.
It is instructive to prove that the convolution is commutative (f ∗g = g∗f), bilinear f ∗(ag+bh) =

af ∗ g + bf ∗ h, and associative f ∗ (g ∗ h) = (f ∗ g) ∗ h.

19.3 Prove of the inversion formula

19.4 Test yourself

19.5 Solutions to the exercises
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